PROOF OF THE RIEMANN MAPPING THEOREM

ANKE D. POHL

ABSTRACT. Unfortunately, the proof of the Riemann Mapping Theorem in the
wonderful book [1] is slightly incorrect, since Schwarz’ Lemma requires 0 to
be fixed by the map this lemma is applied to. In this note we correct this
inaccuracy. For the convenience of the reader, we provide a complete proof,
which is identical to Rudin’s in all steps but the beginning of Step 2. The
references are relative to [1].

Theorem 1 (Riemann Mapping Theorem, Thm. 14.8). Fvery simply connected
domain Q in C (other than C itself) is conformally equivalent to the open unit disc
D.

Proof. Let  be a simply connected domain in C, 2 # C. Recall that then for each
holomorphic function f: @ — C\ {0} there is a holomorphic function g: & — C
such that

f(z) = e
(a complex logarithm). Thus, h: Q — C,
h(z) == e29(2)

is a holomorphic function satisfying h? = f (a holomorphic square root of f).

Let ¥ be the set of injective holomorphic maps #: @ — C such that () C D.
If () = D for some ¢ € X, then ¢ is a biholomorphic map from Q onto D by
Thm. 10.33. We will show that ¥ contains such a .

Step 1: We claim that ¥ is non-empty.

Let wg € C\ Q. Then there exists a holomorphic map ¢: @ — C such that

0(2)? = z — wy.

Let z1, 22 € Q such that ¢(z1) = ¢(z2). Then
21— wo = p(21)? = p(22)” = 20 — wo,
hence z; = z5. Therefore ¢ is injective. Analogously, one sees that
(1) p(z1) # —p(22)
for each pair z1, 29 € Q with 21 # 2.

By the Open Mapping Theorem ¢ is open. Thus, ¢(£2) contains a disc U,(a)
with 0 < r < |a| (for some a). Then (1) implies

Ui(—a) Np(Q) = 0.
Since (€2) is open, it follows that

Ur(—a) N () = 0.
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Hence |¢(2z) + a| > r for all z € Q. Therefore the map

r
V= p+a

is in .

Step 2: Let ¢ € ¥ such that () # D. Further let zp € . We claim that
there is ¥ € ¥ such that

[¥1 (20)] > |9 (20)|-

Set w := 1)(zp) and consider the map
X = P oy

where ¢, is given by Def. 12.3. Since ¢, 0 ¥(2) C D and ¢, 0 ¢ is injective, we
see that y € X. Further, since ¢,, is biholomorphic on D, we find x() g D.

Let @ € D\ x(2). Then ¢, 0o x € E. Since the unique root « of ¢, is not in
x(€2), the map ¢, o x does not have a root.

Hence there is a holomorphic function g: £ — C such that g?> = ¢, o x. Since

g2 is injective, g is so. Moreover we have

19(2)1* = lpa(x(2))| < 1

for all z € Q. Thus g € X.
Let 8 := g(z0). Then

Pri=ppog €N
and 1 (29) = 0. With s(z) := 2?2 it follows that
X=$-a0850g=¢_aq050p_goty.

Set

Fi=gp_aosop_g.
Since 11 (29) = 0, the chain rule implies
(2) X' (20) = F'(0)¢ (20)-
Further, F(D) C D,

F(0) = x(20) = puw(¥(20)) = 0,

and F is not injective (otherwise s would be injective). Hence F' is not a rotation.
Therefore Schwarz’ Lemma shows

|F'(0)] < 1.
Taking absolute values in (2) we find

X' (20)] <[4} (20)]-
Using Thm. 12.4 we get

X' (20) = @l (W)Y (20) =

Sin ce 0 < 1 — |w|? < 1, it follows that |¢(20)| < |X(20)|, and thus
9" (20)] < [¥1(20)I-

Y’ (20) .
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We fix zg € Q and define
X = sup{[/(20)] | ¥ € T}.

Step 3: We claim that there is ¢ € ¥ such that [¢#/(z0)] = A. Step 2 then shows
¥(2) = D, which completes the proof.

Since [(z)] < 1 for all ¢ € ¥ and z € Q, the set X is locally bounded. Let
(¥n)nen be a sequence in X such that (|1, (20)|)nen converges to A. By the The-
orem of Montel there is a subsequence (¢, )ren Which converges uniformly on
compact sets to a holomorphic function ¢:  — C.

The Convergence Theorem of Weierstrass shows that (w;lk)keN converges to

¥ (20). Thus

[ (20)] = A >0.
Since 1,(Q) € D and %, — 9 pointwise, ¥(2) C D. The Maximum Principle
shows J(Q) C D. It remains to show that ¢ is injective.

Let 21,29 € Q, 21 # 2. Set o := U(z1) and oy = ¢, (z1) for £ € N. By
the Identity Theorem there is > 0 such that ¥ — o does not have roots on
D :=U,(z2) C 2 other than possibly zo. After shrinking r we may assume z; ¢ D.
Let

¢ :=min{|J(z) —a| | z € 8D} > 0.
Since (¢, — ag)ren converges uniformly to ¥ — o on D, there is I € N such that
(0 =) = (Yn; —au)lloc <

on D. The Theorem of Rouché shows that on D the map 9 — o has as many roots
as ¥, — aq. Since ¥, — o is injective on {2 and the root z; of v¥,, — a; is not
contained in D, the map v,, — «; does not have any root in D. Therefore ¥ — «
does not have any root in D. Thus, ¥(z2) # a = ¥(21). O
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